Mathematical Tools for Engineering

SCAN 1st

Test 1

2 hours - No document - the classic notations are used

Part 1 - Complex numbers:

1- Find the x+iy form of:

a)
$$\left(\frac{1+i}{1-i}\right)^i$$

b)
$$\left(\frac{1-i}{\sqrt{2}}\right)^{40}$$

a)
$$\left(\frac{1+i}{1-i}\right)^4$$
 b) $\left(\frac{1-i}{\sqrt{2}}\right)^{40}$ c) $e^{(2n+1)\pi i}$, $n=0,1,...$ integer

2- Find the absolute values of

a)
$$\frac{2-i}{3+i}$$

b)
$$\left(\frac{z}{\overline{z}}\right)^5$$
 where z is any complex number c) $\left(-i\right)^i$

c)
$$(-i)^i$$

3- Considering the two complex numbers z=3+4i and w=2-i, calculate and plot on the complex plane (Argand diagram)

a)
$$\frac{z}{w}$$
,

b)
$$\overline{z} w + \overline{w} z$$
 c) w^2

4- Noticing that

$$a. \quad \frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$

b.
$$\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$
; $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$; $\cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$

and using $e^{i\frac{\pi}{12}}$, find the exact value of $\tan\left(\frac{\pi}{12}\right)$.

Same question for
$$\tan\left(\frac{7\pi}{12}\right)$$

5- Give all the complex cube roots of 8.

Part 2 - Vectors:

- 1- Consider points A and B of coordinates A(-1,1,1), B(0,1,-2)
 - a. Give a unit vector in the direction AB
 - b. Deduce the equations defining the line passing through A and B.
- 2- Consider the line through B(3,2,5) and collinear with $\vec{u} = \vec{x} + \vec{y}$
 - a. Find the distance between point O(0,0,0) and the line defined above
 - b. Find the shortest distance between line (B, \vec{u}) and line (O, \vec{v}) where $\vec{v} = \vec{x} + 2\vec{z}$
- 3 Using vectors find the acute angle between two diagonals of a cube.
- 4 Let \vec{u} and \vec{v} be unit vectors in the (\vec{x}, \vec{y}) plane making positive angles α and β ($\beta > \alpha$) with the positive \vec{x} axis.
 - a) Find the coordinates of \vec{u} and \vec{v} in the coordinate system (\vec{x}, \vec{y})
 - b) Calculate $\vec{u}.\vec{v}$ and deduce the expression of $\cos(\beta \alpha)$ in terms of $\cos\alpha, \sin\alpha, \cos\beta$ and $\sin\beta$. Precise explanations are required!
 - c) Calculate $\vec{u} \times \vec{v}$ and deduce the expression of $\sin(\beta \alpha)$