Part 1 - Complex numbers:

- 1- Find the x+iy form of:
 - a) $\frac{(1+i)^2}{1}$ b) $2e^{i\pi/6}$ c) $e^{2n\pi i}$

d) $\left(\frac{\sqrt{2}}{i-1}\right)^{10}$

- 2- Find the absolute values of

 - a) $\frac{25}{3+4i}$ b) $\left(\frac{1+i}{1-i}\right)^5$
- 3- Solve $z^2 + 2z + 1 i = 0$
- 4- Prove that $\sum_{k=0}^{n} e^{i(t+k\delta)} = \frac{e^{it} \left(1 e^{i(n+1)\delta}\right)}{1 e^{i\delta}}$ and deduce the expression of $\sin(t) + \sin(t+\delta) + \sin(t+2\delta) + \dots + \sin(t+n\delta) =$
- 5- Introducing $\hat{\theta}$, a complex angle, and using the equation $\sin \hat{\theta} = \frac{e^{i\hat{\theta}} e^{-i\hat{\theta}}}{2i}$ (admit this result), find the correct value of $\sin\left(\frac{\pi}{2} + i \ln 2\right)$
- a) $\cos i$ b) 3/2 c) $\frac{3-i}{2+i}$

- d) 5/4

Part 2 - Vectors:

- 1- a) Find a unit normal vector to the plane containing the three points A A(-1,1,1), B(2,3,0), C(0,1,-2)
 - b) Find the distance between point O(0,0,0) and the plane defined above
 - c) Find the Cartesian equation of the plane using scalar product.
- 2- Consider the line through A(4,-1,3) and collinear with $\vec{u}=\vec{x}-2\vec{y}$, find the distance from point B(3,2,5) and this line
- 3- Find the projection of vector $\vec{a}=4\vec{x}-3\vec{y}+\vec{z}$ on the line passing through points A(2,3,-1) and B(-2,-4,3)
- 4- A person walks 57 meters at an angle of 47° from the x-axis, then turns at an angle of -15° from the x-axis and walks 72 meters, and finally turns at an angle of 30° from the y-axis and walks 24 meters (angle signs are defined using the classic convention in trigonometry).
 - a- Sketch the corresponding path
 - b- Using vectors, determine how far the person is from the initial position and at what angle from the x-axis.